Non-commutative Metric Topology on Matrix State Space

نویسنده

  • WEI WU
چکیده

We present an operator space version of Rieffel’s theorem on the agreement of the metric topology, on a subset of the Banach space dual of a normed space, from a seminorm with the weak*-topology. As an application we obtain a necessary and sufficient condition for the matrix metric from an unbounded Fredholm module to give the BW-topology on the matrix state space of the C-algebra. Motivated by recent results we formulate a noncommutative Lipschitz seminorm on a matrix order unit space and characterize those matrix Lipschitz seminorms whose matrix metric topology coincides with the BW-topology on the matrix state space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-commutative Metrics on Matrix State Spaces

We use the theory of quantization to introduce non-commutative versions of metric on state space and Lipschitz seminorm. We show that a lower semicontinuous matrix Lipschitz seminorm is determined by their matrix metrics on the matrix state spaces. A matrix metric comes from a lower semicontinuous matrix Lip-norm if and only if it is convex, midpoint balanced, and midpoint concave. The operator...

متن کامل

The Wijsman structure of a quantale-valued metric space

We define and study a quantale-valued Wijsman structure on the hyperspace of all non-empty closed sets of a quantale-valued metric space. We show its admissibility and that the metrical coreflection coincides with the quantale-valued Hausdorff metric and that, for a metric space, the topological coreflection coincides with the classical Wijsman topology. We further define an index of compactnes...

متن کامل

On the metric triangle inequality

A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

Group C-algebras as Compact Quantum Metric Spaces

Let l be a length function on a group G, and let Ml denote the operator of pointwise multiplication by l on l(G). Following Connes, Ml can be used as a “Dirac” operator for C ∗ r (G). It defines a Lipschitz seminorm on C∗ r (G), which defines a metric on the state space of C∗ r (G). We investigate whether the topology from this metric coincides with the weak-∗ topology (our definition of a “com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008